If $\alpha\in T_n$ and $\beta\in S_n$ show that $\alpha \mathcal{R} \alpha\beta$ ($T_n$ is the full transformation monoid, and $S_n$ is the symmetric group, both on $\{1,2,\ldots ,n\}$).
Does this mean show $\alpha T_n = (\alpha\beta )S_n$? How would you do it?