5

How can I compute this Fourier transform?

$$\int \frac{d^3q}{(2\pi)^3}(\vec q \cdot \vec a)(\vec q \cdot \vec b)\frac{1}{q^2}\,e^{i \vec q \cdot \vec r }\,$$

My idea was to write it as

$$-( \vec a \cdot \vec \nabla)(\vec b \cdot \vec \nabla)\int \frac{d^3q}{(2\pi)^3}\frac{1}{q^2}\,e^{i \vec q \cdot \vec r }$$

and use the fact that $\int \frac{d^3q}{(2\pi)^3}\frac{1}{q^2}\,e^{i \vec q \cdot \vec r }=\frac{1}{4\pi r}$, together with $\Delta \frac{1}{r} = -4\,\pi \,\delta(\vec r)$ but is is not exactly the same.

jmaguire
  • 197

3 Answers3

3

So the other answers are correct only for $x≠0$. In the sense of distributions, however, there is indeed a Dirac delta appearing in the result.

The first steps in your approach are correct. both functions $\frac{1}{q^2}$ and $\frac{(q·a)\,(q\cdot b)}{q^2}$ are indeed locally integrable functions and bounded outside a compact set, so are tempered distributions: one can take their Fourier transform in the sense of distributions (remark however that these functions are not in $L^1$ or in $L^2$, so one cannot take the Fourier transform in the usual sense).

In the sense of distributions (writing with abuse of notation the Fourier transform as an integral) $$ \frac{1}{(2\pi)^3}\int_{\mathbb R^3} \frac{(q·a)\,(q\cdot b)}{q^2} \,e^{i\,q\cdot x} \,\mathrm d q = -(a\cdot\nabla)(b\cdot\nabla)\, \frac{1}{4π|x|}. $$ Taking a first derivative of $1/|x|$, one obtains $-x/|x|^3$ (even in the sense of distributions) which is still a locally integrable function. However, taking two derivatives leads to a non locally integrable function, and so one has to be careful as you suspect. A formula that generalizes the formula of the Laplacian $-\Delta \frac{1}{4\pi|x|} = \delta_0$ is the Formula of the Hessian (where $\nabla^2 = \nabla\nabla$) $$ \nabla^2\left(\frac{1}{4\pi|x|}\right) = \frac{1}{4π} \,\mathrm{pv.}\,\frac{3x\otimes x - |x|^2 \,\mathrm{Id}}{|x|^5} - \frac{1}{3}\, \delta_0 \,\mathrm{Id} $$ where pv. denotes the principal value, see e.g. p.55 here. (In particular, if you sum the coordinates $(j,j)$ of this matrix, you obtain the formula for the Laplacian). Now remark that $(a\cdot\nabla)(b\cdot\nabla) = (a\otimes b):\nabla^2$ (if you prefer coordinates, $\sum_{ij} a_i\partial_i\, b_j\partial_j = \sum_{ij} a_ib_j\,\partial_i\partial_j$) and so $$ \begin{align} \frac{1}{(2\pi)^3}\int_{\mathbb R^3} \frac{(q·a)\,(q\cdot b)}{q^2} \,e^{i\,q\cdot x} \,\mathrm d q &= -(a\otimes b):\nabla^2\left(\frac{1}{4\pi|x|}\right). \\ &= \frac{1}{4π} \,\mathrm{pv.}\,\frac{|x|^2 (a·b) - 3\,(a\cdot x)(b\cdot x)}{|x|^5} + \frac{a\cdot b}{3}\, \delta_0 \end{align} $$

The physicist usually do not write the principal value, and so in shorter notations (with $r=|x|$) $$ \boxed{\frac{1}{(2\pi)^3}\int_{\mathbb R^3} \frac{(q·a)\,(q\cdot b)}{q^2} \,e^{i\,q\cdot x} \,\mathrm d q = \frac{1}{4πr^3} \left(a·b - 3\,(a\cdot \tfrac{x}{r})(b\cdot \tfrac{x}{r})\right) + \frac{a\cdot b}{3}\, \delta_0} $$

LL 3.14
  • 12,457
  • I just didn't quite got how you obtained the expression for $\nabla^2 (\frac{1}{4\pi |x|})$ – jmaguire Dec 14 '20 at 16:00
  • In order to compute that, you have to compute the derivative in the sense of distributions. Since $∇^2(1/|x|) = -∇(x/|x|^3)$, we can just compute the right hand-side, and in the sense of distributions, it means that you have to compute $$ \int_{\mathbb R^3} \frac{x}{|x|^3} , \nabla\varphi(x), \mathrm d x = \lim_{\epsilon\to 0} ∫_{|x|>\epsilon} G(x), \varphi(x),\mathrm d x ,-, \frac{1}{3}, \varphi(0) ,\mathrm{Id} $$ where $G$ is the gradient of $x/|x|^3$ out of $x=0$ (so in the classical sense). This is usually done by cutting the integral, and then performing integration by parts – LL 3.14 Dec 14 '20 at 17:51
  • One more thing, isn't there a $-$ sign missing on the first equation you wrote? – jmaguire Dec 15 '20 at 17:10
  • Yes you are right, there were several sign missing. Actually, and easy way to check the formulas is to check that one has the usual derivative out of 0, and one has $-\Delta 1/4\pi r = \delta_0$ – LL 3.14 Dec 16 '20 at 09:14
0

I would go with spherical polar coordinates. Perhaps with $\vec{r}=(r,0,0)$, then the dot products can be evaluated using trigonometry functions of $\phi$ and $\theta$. It would eventually look like a Dirac delta modulated by the dot products among $\vec{a}$, $\vec{b}$ and $\vec{r}$.

Edit: It is indeed more straightforward with your original idea.

$-(a\cdot\nabla)(b\cdot\nabla) \Delta^{-1} \delta(\vec{r})=-(a\cdot\nabla)(b\cdot\nabla) \frac{1}{4\pi r}=b\cdot\nabla(a\cdot \frac{\vec{r}}{r^3})=\frac{1}{4\pi r^3}[\vec{a}\cdot\vec{b}-3(\vec{a}\cdot\frac{\vec{r}}{r}) (\vec{b}\cdot\frac{\vec{r}}{r})].$

So it's the mutual energy between two dipoles a and b.

I would answer the above comment here (I cannot make comments as I'm new to the site): The Dirac delta is there at $r=0$, it's just that it is also nonzero at other places.

C Tong
  • 366
0

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ In order to deal with possible issues related to integrals convergence, I'll include the $\ds{\underline{\it parameter}\,\,\, \beta}$. Its relevance is discussed at the very end. \begin{align} &\bbox[5px,#ffd]{{1 \over \pars{2\pi}^{3}} \iiint_{\mathbb{R}^{3}}\pars{\vec{q}\cdot\vec{a}} \pars{\vec{q}\cdot\vec{b}} {\expo{\ic\vec{q}\cdot\vec{r}} \over q^{2 + \beta}\,}\,\,\dd^{3}\vec{q}} \\[5mm] = &\ {1 \over \pars{2\pi}^{3}}\,\vec{a}\cdot\bracks{% \iiint_{\mathbb{R}^{3}}\vec{q}\,\vec{q}\, {\expo{\ic\vec{q}\cdot\vec{r}} \over q^{2}}{\dd^{3}\vec{q} \over q^{\beta}}}\cdot\vec{b} \\[5mm] = &\ {1 \over \pars{2\pi}^{3}}\,\vec{a}\cdot\bracks{% \int_{0}^{\infty}\pars{% \int_{\Omega_{\vec{q}}}\hat{q}\,\hat{q}\, \expo{\ic\vec{q}\cdot\vec{r}}\,\dd\Omega_{\vec{q}}} q^{2 - \beta}\,\,\dd q}\cdot\vec{b}\label{1}\tag{1} \end{align} Lets perform the angular integration where, for simplicity, $\ds{\vec{r}}$ is chosen along the $\ds{\hat{z}}$-axis. Later on, the $\ds{\vec{r}}$-general direction can be suitable restored: \begin{align} &\int_{\Omega_{\vec{q}}}\hat{q}\,\hat{q}\, \expo{\ic\vec{q}\cdot\vec{r}}\,\dd\Omega_{\vec{q}} = \int_{0}^{2\pi}\int_{0}^{\pi} \hat{q}\,\hat{q}\expo{\ic qr\cos\pars{\theta}}\, \sin\pars{\theta}\,\dd\theta\,\dd\phi \\[5mm] = &\ \int_{0}^{\pi} \bracks{\sin^{2}\pars{\theta}\,\pi\,\hat{x}\,\hat{x} + \sin^{2}\pars{\theta}\,\pi\,\hat{y}\,\hat{y} + \cos^{2}\pars{\theta}\pars{2\pi}\hat{z}\,\hat{z}}\ \times \\ &\ \phantom{\,\,\int_{0}^{\pi}} \,\,\,\expo{\ic qr\cos\pars{\theta}}\,\,\sin\pars{\theta} \,\dd\theta \\ = &\ \pi\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}} \int_{-1}^{1}\pars{1 - \xi^{2}}\expo{\ic qr\xi}\,\dd\xi + 2\pi\,\hat{z}\,\hat{z} \int_{-1}^{1}\xi^{2}\expo{\ic qr\xi}\,\dd\xi \\ = &\ 4\pi\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}} \on{f}\pars{qr} + 4\pi\,\hat{z}\,\hat{z}\,\on{g}\pars{qr} \\[5mm] &\ \mbox{where}\quad \left\{\begin{array}{rcl} \ds{\on{f}\pars{\xi}} & \ds{\equiv} & \ds{\sin\pars{\xi} - \xi\cos\pars{\xi} \over \xi^{3}} \\[2mm] \ds{\on{g}\pars{\xi}} & \ds{\equiv} & \ds{\pars{\xi^{2} - 2}\sin\pars{\xi} + 2\xi\cos\pars{\xi} \over \xi^{3}} \end{array}\right. \end{align}


(\ref{1}) becomes \begin{align} &\bbox[5px,#ffd]{{1 \over \pars{2\pi}^{3}} \iiint_{\mathbb{R}^{3}}\pars{\vec{q}\cdot\vec{a}} \pars{\vec{q}\cdot\vec{b}} {\expo{\ic\vec{q}\cdot\vec{r}} \over q^{2 + \beta}}\,\dd^{3}\vec{q}} \\[5mm] = &\ {1 \over 2\pi^{2}}\,{1 \over r^{3 - \beta}\,} \,\,\vec{a}\,\cdot \\[2mm] &\ \bracks{\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}} \int_{0}^{\infty}\on{f}\pars{\xi}\,\xi^{2 - \beta}\, \,\dd\xi + \hat{z}\,\hat{z} \int_{0}^{\infty}\on{g}\pars{\xi}\,\xi^{2 - \beta}\, \,\dd\xi} \cdot\vec{b} \end{align} The integrations are given by \begin{align} &\int_{0}^{\infty}\on{f}\pars{\xi}\,\xi^{2 - \beta}\, \,\dd\xi = {\Gamma\pars{2 - \beta}\sin\pars{\pi\beta/2} \over \beta} \,,\quad\,\,\,\,\,\, 0 < \Re\pars{\beta} < 1 \\[5mm] &\ \int_{0}^{\infty}\on{g}\pars{\xi}\,\xi^{2 - \beta}\, \,\dd\xi = -\,{\Gamma\pars{3 - \beta}\sin\pars{\pi\beta/2} \over \beta} \,,\quad 1 < \Re\pars{\beta} < 3 \end{align} The first integral $\ds{\to {\pi \over 2}}$ as $\ds{\beta \to 0^{+}}$ while such a limit is not allowed for the second integral -unless we assume an analytical continuation- which we left as a discussion for the OP.
Felix Marin
  • 89,464
  • I don't see how the second integral in $\xi$ is $0$. It seems not even integrable. – LL 3.14 Dec 14 '20 at 09:02
  • @LL3.14 I rewrote everything. I guess the original integration diverges unless you include some sort of regularization. That type of integrals appear frequently in Electromagnetic Theory and Quantum Mechanics. Thanks. – Felix Marin Dec 14 '20 at 21:26