$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
In order to deal with possible issues related to integrals convergence, I'll include the $\ds{\underline{\it parameter}\,\,\, \beta}$. Its relevance is discussed at the very end.
\begin{align}
&\bbox[5px,#ffd]{{1 \over \pars{2\pi}^{3}}
\iiint_{\mathbb{R}^{3}}\pars{\vec{q}\cdot\vec{a}}
\pars{\vec{q}\cdot\vec{b}}
{\expo{\ic\vec{q}\cdot\vec{r}} \over
q^{2 + \beta}\,}\,\,\dd^{3}\vec{q}}
\\[5mm] = &\
{1 \over \pars{2\pi}^{3}}\,\vec{a}\cdot\bracks{%
\iiint_{\mathbb{R}^{3}}\vec{q}\,\vec{q}\,
{\expo{\ic\vec{q}\cdot\vec{r}} \over q^{2}}{\dd^{3}\vec{q} \over q^{\beta}}}\cdot\vec{b}
\\[5mm] = &\
{1 \over \pars{2\pi}^{3}}\,\vec{a}\cdot\bracks{%
\int_{0}^{\infty}\pars{%
\int_{\Omega_{\vec{q}}}\hat{q}\,\hat{q}\,
\expo{\ic\vec{q}\cdot\vec{r}}\,\dd\Omega_{\vec{q}}}
q^{2 - \beta}\,\,\dd q}\cdot\vec{b}\label{1}\tag{1}
\end{align}
Lets perform the angular integration where, for simplicity, $\ds{\vec{r}}$ is chosen along the $\ds{\hat{z}}$-axis. Later on, the $\ds{\vec{r}}$-general direction can be suitable restored:
\begin{align}
&\int_{\Omega_{\vec{q}}}\hat{q}\,\hat{q}\,
\expo{\ic\vec{q}\cdot\vec{r}}\,\dd\Omega_{\vec{q}} =
\int_{0}^{2\pi}\int_{0}^{\pi}
\hat{q}\,\hat{q}\expo{\ic qr\cos\pars{\theta}}\,
\sin\pars{\theta}\,\dd\theta\,\dd\phi
\\[5mm] = &\
\int_{0}^{\pi}
\bracks{\sin^{2}\pars{\theta}\,\pi\,\hat{x}\,\hat{x} +
\sin^{2}\pars{\theta}\,\pi\,\hat{y}\,\hat{y} +
\cos^{2}\pars{\theta}\pars{2\pi}\hat{z}\,\hat{z}}\ \times
\\ &\ \phantom{\,\,\int_{0}^{\pi}}
\,\,\,\expo{\ic qr\cos\pars{\theta}}\,\,\sin\pars{\theta}
\,\dd\theta
\\ = &\
\pi\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}}
\int_{-1}^{1}\pars{1 - \xi^{2}}\expo{\ic qr\xi}\,\dd\xi +
2\pi\,\hat{z}\,\hat{z}
\int_{-1}^{1}\xi^{2}\expo{\ic qr\xi}\,\dd\xi
\\ = &\
4\pi\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}}
\on{f}\pars{qr} +
4\pi\,\hat{z}\,\hat{z}\,\on{g}\pars{qr}
\\[5mm] &\ \mbox{where}\quad
\left\{\begin{array}{rcl}
\ds{\on{f}\pars{\xi}} & \ds{\equiv} &
\ds{\sin\pars{\xi} - \xi\cos\pars{\xi} \over \xi^{3}}
\\[2mm]
\ds{\on{g}\pars{\xi}} & \ds{\equiv} &
\ds{\pars{\xi^{2} - 2}\sin\pars{\xi} + 2\xi\cos\pars{\xi} \over \xi^{3}}
\end{array}\right.
\end{align}
(\ref{1}) becomes
\begin{align}
&\bbox[5px,#ffd]{{1 \over \pars{2\pi}^{3}}
\iiint_{\mathbb{R}^{3}}\pars{\vec{q}\cdot\vec{a}}
\pars{\vec{q}\cdot\vec{b}}
{\expo{\ic\vec{q}\cdot\vec{r}} \over q^{2 + \beta}}\,\dd^{3}\vec{q}}
\\[5mm] = &\
{1 \over 2\pi^{2}}\,{1 \over r^{3 - \beta}\,}
\,\,\vec{a}\,\cdot
\\[2mm] &\
\bracks{\pars{\hat{x}\,\hat{x} + \hat{y}\,\hat{y}}
\int_{0}^{\infty}\on{f}\pars{\xi}\,\xi^{2 - \beta}\,
\,\dd\xi +
\hat{z}\,\hat{z}
\int_{0}^{\infty}\on{g}\pars{\xi}\,\xi^{2 - \beta}\,
\,\dd\xi}
\cdot\vec{b}
\end{align}
The integrations are given by
\begin{align}
&\int_{0}^{\infty}\on{f}\pars{\xi}\,\xi^{2 - \beta}\,
\,\dd\xi =
{\Gamma\pars{2 - \beta}\sin\pars{\pi\beta/2} \over \beta}
\,,\quad\,\,\,\,\,\, 0 < \Re\pars{\beta} < 1
\\[5mm] &\
\int_{0}^{\infty}\on{g}\pars{\xi}\,\xi^{2 - \beta}\,
\,\dd\xi =
-\,{\Gamma\pars{3 - \beta}\sin\pars{\pi\beta/2} \over \beta}
\,,\quad 1 < \Re\pars{\beta} < 3
\end{align}
The first integral
$\ds{\to {\pi \over 2}}$ as
$\ds{\beta \to 0^{+}}$ while such a limit is not allowed for the second integral -unless we assume an analytical continuation- which we left as a discussion for the OP.