0

Is $\dfrac{d \sin\theta}{d \theta} \big|_{\theta=0} = 1$ a consequence of the geometrical definition of $\sin\theta \equiv \dfrac{opp}{hyp}$?

I do not know whether $\dfrac{d \sin\theta}{d \theta} \big|_{\theta=0} = 1$ is an additional constraint on the sine function or not.

Christina Daniel
  • 383
  • 2
  • 11

1 Answers1

0

$$\dfrac{d \sin\theta}{d \theta} \big|_{\theta=0} = \lim _{h \to 0} \dfrac{\sin(0+h) - \sin(0)}h \\ \; \\ \; \\= \lim _{h \to 0} \dfrac{\sin(h) }h $$ The geometric definition of $\sin(h)$ allows us to set up the inequality $$| \sin(h)| \le |h|\le |\tan(h)| $$ ($h$ is in radians) now dividing through by $| \sin(h)|$ ... $$1\le \bigg | \dfrac{ h}{ \sin(h)} \bigg | \le |\sec(h)| $$ So by the squeeze theorem we have $$\lim _{h \to 0} \bigg | \dfrac{ h}{ \sin(h)} \bigg | =1$$ Hopefully you can take it from here

WW1
  • 10,497