Let $B$ and $W$ be independent symmetric random walks starting at $0$ with filtration $\mathcal F_0=\{\emptyset,\Omega\}$ and $\mathcal F_n=\sigma(B_1,...,B_n,W_1,...,W_n)$.
Define $\mathcal E(B)_n=e^{B_n}(\cosh 1)^{-n}$ and $\mathcal E(W)_n=e^{W_n}(\cosh 1)^{-n}$ for all $n\ge 0$.
Also let $\tau=\inf\{n:\mathcal E(B)_n\le\frac 12\},\sigma=\inf\{n:\mathcal E(W)_n\ge 2\}$.
(a) Calculate $\Pr(\tau<\infty)$ and show that $\Pr(\sigma<\infty)\in (0,1)$.
(b) Which of the following three processes are uniformly integrable martingales: $$\mathcal E (B)^{\sigma\wedge\tau},\mathcal E(W)^{\sigma\wedge\tau},\mathcal E (B)^{\sigma\wedge\tau}\mathcal E(W)^{\sigma\wedge\tau}.$$
We can write \begin{align} \Pr(\tau<\infty)&=1-\Pr(\mathcal E(B)_n>\frac 12\text{ for all }n). \end{align} But then how to proceed. I have no idea why we are trying to compute $\mathcal E(B)_n$ and neither do I know how to compute this probability. Can someone give me a hint? Thank you!
Edit:
I have a rough idea but it still does not work. We need to involve $\Pr(\tau<\infty)$.
Firstly, it is easy to show that $\mathcal E(B)_n,\mathcal E(W)_n$ are martingales. Secondly, it is easy to see that $\tau,\sigma$ are stopping times with respect to the filtration $\mathcal \{F_n\}_{n\in\mathbb Z_{>0}} $ . So I want to use the Optimal Stopping Theorem. Note that \begin{align} \mathbb E[\mathcal E(B)_\tau]&=\mathbb E[\lim_{n\to\infty}\mathcal E(B)_{n\wedge\tau}]. \end{align} By Fatou's lemma, $$\mathbb E[\lim_{n\to\infty}\mathcal E(B)_{n\wedge\tau}]\le\liminf_{n\to\infty}\mathbb E[\mathcal E(B)_{n\wedge\tau}].$$ Since $\mathcal E(B)_n$ is a martingale, we have $$ \mathbb E[\mathcal E(B)_{n\wedge\tau}]=\mathbb E[\mathcal E(B)_{0\wedge\tau}]=1. $$
So $1\ge \mathbb E[\mathcal E(B)_\tau].$
Write $\mathbb E[\mathcal E(B)_\tau]=\mathbb E[\mathcal E(B)_\tau 1_{\tau<\infty}+\mathcal E(B)_\tau 1_{\tau=\infty}]=\mathbb E[\mathcal E(B)_\tau;\tau<\infty]+\mathbb E[\mathcal E(B)_\tau;\tau=\infty].$
Remark: Note that we have applied Fatou's lemma, but we cannot apply the dominated convergence to get equality, since the random walk can visit any big number before it returns to some point such that $\mathcal E(B)_n\le\frac 12$.