Let $a, b \in \mathbb{Q}$ be two elements such that $a,b$ and $ab$ are not squares in $\mathbb{Q}$
Prove that $\mathbb{Q}(\sqrt{a}, \sqrt{b})= \mathbb{Q}( \sqrt{a}+\sqrt{b})$
Let $a, b \in \mathbb{Q}$ be two elements such that $a,b$ and $ab$ are not squares in $\mathbb{Q}$
Prove that $\mathbb{Q}(\sqrt{a}, \sqrt{b})= \mathbb{Q}( \sqrt{a}+\sqrt{b})$
Usually, to prove equality of sets $A=B$ you show that $A \subseteq B$ and also $B \subseteq A$.
In your case, here are the two parts.
Part I.
Let $x \in \mathbb{Q}\left(\sqrt{a}, \sqrt{b}\right)$. Then, .... and you conclude $x \in \mathbb{Q}\left(\sqrt{a} + \sqrt{b}\right)$. Hence, $\mathbb{Q}\left(\sqrt{a}, \sqrt{b}\right) \subseteq \mathbb{Q}\left(\sqrt{a}+ \sqrt{b}\right)$.
Part II.
Let $x \in \mathbb{Q}\left(\sqrt{a} + \sqrt{b}\right)$. Then, .... and you conclude $x \in \mathbb{Q}\left(\sqrt{a}, \sqrt{b}\right)$. Hence, $\mathbb{Q}\left(\sqrt{a} + \sqrt{b}\right) \subseteq \mathbb{Q}\left(\sqrt{a}, \sqrt{b}\right)$.
Please update your question or post comments about your progress.