I was answering this question: $\int_0^\infty(\log x)^2(\mathrm{sech}\,x)^2\mathrm dx$ and in my answer, I encountered the integral
$$\int_0^{\infty} \log^2(x) e^{-kx}dx$$ which according to WolframAlpha for $k=1,2,3$ and thereby generalizing gives us
$$\int_0^{\infty} \log^2(x) e^{-kx}dx = \dfrac{\pi^2}{6k} + \dfrac{(\gamma+ \ln(k))^2}{k} \tag{$\star$}$$
Also, in general, is there a nice form for
$$\int_0^{\infty} \log^m(x) e^{-kx} dx \tag{$\perp$}$$
EDIT
For $(\star)$, if we let $kx = t$, we then get $$I = \int_0^{\infty} \log^2(t/k) e^{-t} \dfrac{dt}k = \dfrac1k\int_0^{\infty}\log^2(t) e^{-t}dt-\dfrac{2\log(k)}{k}\int_0^{\infty}\log(t) e^{-t} dt + \dfrac{\log^2(k)}k$$
Considering the above, $(\star)$ and $(\perp)$ boil down to evaluating the integral
$$\color{red}{I(m) = \int_0^{\infty} \log^m(x) e^{-x} dx} \tag{$\spadesuit$}$$
Some values of $I(m)$. \begin{align} I(1) & = -\gamma\\ I(2) & = \zeta(2) + \gamma^2\\ I(3) & = -2\zeta(3) - 3 \gamma \zeta(2) - \gamma^3\\ I(4) & = \dfrac{27}2 \zeta(4) +8 \gamma \zeta(3) + 6 \gamma^2 \zeta(2) + \gamma^4\\ I(5) & = -24 \zeta(5) - \dfrac{135}2 \gamma \zeta(4) - 20 \gamma^2 \zeta(3) - 20\zeta(2) \zeta(3) - 10 \gamma^3 \zeta(2) -\gamma^5 \end{align}