Hint: Please see this link. To translate it to your problem, note that $ b = m^2k $. From here, one of the square roots on the right hand side of their expression must reduce.
In the case that $ a + \sqrt{a^2 - b} = 2p^2, p \in \mathbb{N} $, $ p^2 = \frac{a + \sqrt{a^2 - b}}{2} $. For the second case $ q^2 = \frac{a - \sqrt{a^2 - b}}{2} $. Hence, if $ \frac{a \pm \sqrt{a^2 - b}}{2} $ is a perfect square then the nested square root is reducible.
For example, let $ a = 30, b = 896 $. In this case, $ \frac{a + \sqrt{a^2 - b}}{2} = 16 $ so $ \sqrt{30 + \sqrt{896}} $ is reducible, being equal to $ 4 + \sqrt{14} $. Also, note that if $ a = 30, b = 756 $, it is reducible because $ \frac{a + \sqrt{a^2 - b}}{2} = 9 $, being equal to $ 3 + \sqrt{21} $.