Solve for $a_k$ in terms of $a_0$ and the other parameters in the following recurrence relation:
$a_k = ba_{k−1} + cr^k$, assuming $b \neq r$.
Solve for $a_k$ in terms of $a_0$ and the other parameters in the following recurrence relation:
$a_k = ba_{k−1} + cr^k$, assuming $b \neq r$.
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Welcome!! Generating function is the answer. Take $f(x)=\sum a_kx^k$, multiply by $x^k$ each sides and sum over $k$.. $$ \sum a_kx^k=bx\sum a_{k-1}x^{k-1}+c\sum r^kx^k $$ led to $$ f(x)=bxf(x)+\frac{c}{1-rx} $$ or $$ f(x)=\frac{c}{(1-bx)(1-rx)}. $$ Expand by partial fraction and you can find your $a_k$, or you can use the fact that $$ f(x)=c\sum b^kx^k\sum r^kx^k $$ can be written as $$ f(x)=c\sum_{n\geq0}\sum_{0\leq k\leq n}b^kr^{n-k}x^k $$ and so $$ f(x)=\sum_nc\frac{b^{n+1}-r^{n+1}}{b-r}x^n. $$