Let $P$ be a $30$-sided polygon inscribed in a circle. There are $N$ number of triangles whose vertices are the vertices of $P$ such that any two vertices of each triangle are separated by at least three other vertices at $P$. Find the value of $\frac{N}{100}$.
What I Tried: This is more like a Combinatorics problem rather than a geometry problem, so here is what I think.
First, fix a point of a triangle. The next point can be chosen in $23$ ways. But I am not sure how to choose the $3$rd point, as for choosing the $2$nd point there are slight variations as well, which dosen't follow the rule.
I thought before of fixing one point, and then the next $2$ points can be chosen in ${23}\choose{2}$ ways, but then I realised that is wrong since those $2$ points might not have a $3$ point gap, and I couldn't get on how to progress on this.
As usual, I also know that the number of triangles on an $n$-sided polygon with no shared sides is given by the formula :- $$\rightarrow\frac{n(n-4)(n-5)}{6}$$ So the total number of triangles is $3250$, but I am not sure on how this fact will help in this problem.
Can anyone help me? Thank You.