If we know $c,d\in\mathbb Z/N\mathbb Z$ and $\gcd(c,d,N)=1$. How do we prove there always exist $k_1, k_2\in\mathbb Z$ such that $\gcd(c+k_1N, d+k_2N)=1$ ?
It looks simple but I've been stuck for long. Thanks.
If we know $c,d\in\mathbb Z/N\mathbb Z$ and $\gcd(c,d,N)=1$. How do we prove there always exist $k_1, k_2\in\mathbb Z$ such that $\gcd(c+k_1N, d+k_2N)=1$ ?
It looks simple but I've been stuck for long. Thanks.
Let $$s = \prod_{p\ |\ c,p\ \nmid\ N} p$$
Take $u$ such that $$uN=1-d\bmod s$$
$d+uN=d\bmod \gcd(c,N)$ is a unit and $d+uN=1\bmod s$ is a unit thus $$\gcd(c,d+uN)=1$$