1

Use Fermat's Little Theorem to find the remainder of $5^{15}$ divided by $1337$.

I know Fermat's Little Theorem, but failed to understand how to use it in this.

output.944

2 Answers2

0

$$5^3\equiv-66\pmod{191}$$ $$5^4\equiv-330\equiv52,5^5\equiv5\cdot52\equiv69,5^6\equiv5\cdot69\equiv-37,5^7\equiv5\cdot(-37)\equiv6$$

$$5^{15}\equiv5(5^7)^2\equiv5\cdot6^2\equiv-11\pmod{191}\ \ \ \ (1)$$

$$5^3\equiv-1\pmod7\implies5^{15}=(5^3)^5\equiv(-1)^5\pmod7\ \ \ \ (2)$$

Use Chinese Remainder Theorem

PM 2Ring
  • 4,844
0

We'll forego using any 'heavy' theory and see what we can come up with to manually crank out the answer.

Anticipating what is to come we write out,

$\tag 1 \;(13 + k)10^2 \equiv k10^2 - 37 \pmod{1337}$

Getting to work,

$\tag 2 5^5 = 3125 = 3100 + 25$

Since $31 = 13\cdot2 + 5$,

$\tag 3 5^5 = (13*2 + 5) 10^2 + 25 = 2(13 + 3) 10^2 - 75$

and so by $\text{(1)}$,

$\tag 4 5^5 \equiv 2(3\cdot10^2-37)-75 \equiv 2 (263) -75\equiv 451 \pmod{1331} $

With the $\text{(4)}$ work behind us, and observing that

$\quad 451 = 450+1 \land 450 = 2 \cdot 3^2 \cdot 5^2$

we apply the binomial theorem,

$\tag 5 (2 \cdot 3^2 \cdot 5^2 + 1)^3= 2^3 \cdot 3^6 \cdot 5^6 + 3\cdot 2^2 \cdot 3^4 \cdot 5^4 + 3\cdot 2 \cdot 3^2 \cdot 5^2+ 1$

Lets us modulo reduce the first (and largest) term on the rhs of $\text{(5)}$ using mental arithmetic and $\text{(1)}$ and, at the start, $\text{(4)}$:

$\quad 2^3 \cdot 3^6 \cdot 5^6 \equiv 8 \cdot 9 \cdot 9 \cdot 9 \cdot 5 \cdot 451 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot 2255 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot (2300 -45) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot (1000-37 -45) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot 419 \cdot (-1) =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (3600 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (2300 -37 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (1000 - 37 -37 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 240 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (2100 + 60) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (800-37 +60) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (514) \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (4500 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (3200 - 37 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (1900 -37 - 37 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (600 - 37 -37 - 37 + 90 + 36) \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 615 \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot 4 \cdot 615 \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot (2400 +60) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot (1160 - 37) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot 214 \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 428 \pmod{1337}$

Next we modulo reduce the second term on the rhs of $\text{(5)}$:

$\quad 3\cdot 2^2 \cdot 3^4 \cdot 5^4 =$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 50^2 =$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 2500 \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot (1200 -37) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 174 \cdot (-1) =$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot (1500 + 30 + 36) \cdot (-1)\equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot (200 - 37 + 30 + 36) \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot 229 \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot (1800 + 180 + 81) \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot (2000 + 61) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot 724 \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 502 \pmod{1337}$

After modulo reducing the final two terms $\text{(5)}$ we can write

$\tag 6 5^{15} \equiv 451^3 \equiv 428 + 502 + 13 + 1 \equiv 944 \pmod{1337}$

CopyPasteIt
  • 11,366