$$2^5\equiv3\pmod{29}\implies9\equiv(2^5)^2$$
$2^{14}=(2^5)^22^4\equiv3^22^4\equiv-1\pmod{29}$
So, $2$ is a primitive root $\pmod{29}$
$$\implies5\equiv-2^3\cdot3\equiv2^{14+3+5}$$
Using Discrete logarithm with index in base $2,$
$22+44$ind$_2x\equiv10\pmod{\phi(29)}$
$\iff44$ind$_2x\equiv10-22\pmod{\phi(29)}\equiv-12+28\pmod{28}$
$\iff11$ind$_2x\equiv4\pmod7$
$\iff4$ind$_2x\equiv4\pmod7$ as $(11\equiv4\pmod7)$
$\iff$ind$_2x\equiv1\pmod7$ as $(4,7)=1$
$\implies x\equiv2^{1+7k}\pmod{29}, 0\le1+7k\le28\iff0\le k\le3$