Let
$$U=\{(x_1,x_2,x_3,x_4)\in \mathbb Z^4\mid x_1+x_2+x_3+x_4=28,\ x_i \geq 0,\ i=1,2,3,4 \},$$
$$A_k=\{(x_1,x_2,x_3,x_4)\in \mathbb Z^4\mid x_1+x_2+x_3+x_4=28,\ x_k\leq a_k,\ x_i \geq 0,\ i=1,2,3,4 \},$$ where $a_1=6$, $a_2 = 10$, $a_3 = 15$, $a_4 = 21$.
The number of solutions you want is
\begin{align}
|A_1\cap A_2 \cap A_3 \cap A_4| &= |U| -|(A_1\cap A_2 \cap A_3 \cap A_4)^c| \\
&= |U| - |A_1^c \cup A_2^c \cup A_3^c\cup A_4^c|\\
&= |U| - (|A_1^c|+|A_2^c|+|A_3^c|+|A_4^c|)\\
&+(|A_1^c\cap A_2^c|+|A_1^c\cap A_3^c|+|A_1^c\cap A_4^c|+|A_2^c\cap A_3^c|+|A_2^c\cap A_4^c|+|A_3^c\cap A_4^c|)\\ &-(|A_1^c\cap A_2^c\cap A_3^c|+|A_1^c\cap A_2^c\cap A_4^c|+|A_1^c\cap A_3^c\cap A_4^c|+|A_2^c\cap A_3^c\cap A_4^c|)\\ &+(|A_1^c\cap A_2^c\cap A_3^c\cap A_4^c|)
\end{align}
which follows from the inclusion-exclusion principle.
Note that $A_k^c =\{(x_1,x_2,x_3,x_4)\in \mathbb Z^4\mid x_1+x_2+x_3+x_4=28,\ x_k\geq a_k+1,\ x_i \geq 0,\ i=1,2,3,4 \}.$
I'll show how to calculate these on an example and leave the rest to you (note that lots of the above sets will be empty). Let's look at $|A_1^c\cap A_2^c|$. This is the number of nonnegative integer solutions of $$x_1+x_2+x_3+x_4 = 28,\ x_1 \geq 7,\ x_2\geq 11.$$
Now, $$x_1+x_2+x_3+x_4 = 28 \implies (x_1 - 7) + (x_2 -11) + x_3 + x_4 = 10,$$
so the number of solutions is $\binom {10+4-1}{4-1}$.
The rest can be calculated analogously.