Let $K$ be a Lebesgue measurable function defined on $(0, \infty)$ and assume $\int_0^{\infty}\vert\,K(y)\,\vert y^{-\frac{1}{p}}dy < \infty$. Pick $f \in L_p(0, \infty) (p > 1)$ and define a linear mapping $T$ by: $$(Tf)(x) = \int_0^{\infty}K(y)f(x y) dy = \frac{1}{x}\int_0^{\infty}K(\frac{y}{x})f(y)dy, x > 0$$
My questions are:
- $\forall\,f \in L_p(0, \infty), Tf \in L_p(0, \infty)$ (solved)
- $\|\,T\| \leq \int_0^{\infty}\vert\,K(y)\,\vert y^{-\frac{1}{p}}dy$ (solved) and the equality holds when $K$ is non-negative (not solved)
To prove the first two, by using Minkowski's integral inequality and replace $y$ by $t x$, I tried: $$[\int_0^{\infty}\vert\,\int_0^{\infty}\frac{1}{x}K(t)f(t x)d t\,\vert^p dx]^{\frac{1}{p}} \leq \int_0^{\infty}[\int_0^{\infty}\vert\,\frac{1}{x}K(t)f(t x)\,\vert^p dx]^{\frac{1}{p}} dt = \\\int_0^{\infty}\vert\,K(t)\,\vert[\int_0^{\infty}\vert\,\frac{t}{x}f(x)\,\vert^p\frac{1}{t}dx]^{\frac{1}{p}} d t = \int_0^{\infty}\vert\,K(t)\,\vert t^{-\frac{1}{p}}\underline{[\int_0^{\infty}\vert\,\frac{t}{x}f(x)\,\vert^p dx]^{\frac{1}{p}}} d t$$
Then I can not compare the underlined part and $\|f\|_p$. If my attempt is on the right track, could you anyone provide hints on how to do the desired comparison? Also I was block by the second part of question 2 and the third question. I am not sure if I can apply Minkowski's inequality when $K$ is not absolutely integrable. Here is a similar question but I could not find it helpful ...