$$ \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix} = \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}$$ $$\begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}^2 = \begin{bmatrix} X^2 & 0\\ 2X & X^2\\ \end{bmatrix}$$ $$\begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}^3 = \begin{bmatrix} X^3 & 0\\ 2X^2+X^2 & X^3\\ \end{bmatrix}$$ $$ \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}^n = \begin{bmatrix} X^n & 0\\ nX^{n-1} & X^n\\ \end{bmatrix}^n$$ Here you can see that the this matrix on the n-th exponent is it's own derivative. Is there any explanation for this ?
$n = 1,2,3 \rightarrow\text{induction holds}$
$n \rightarrow n+1$ $$ \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}^{n+1} = \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}^n \begin{bmatrix} X & 0\\ 1 & X\\ \end{bmatrix}=\begin{bmatrix} X^n & 0\\ nX^{n-1} & X^n\\\end{bmatrix}\begin{bmatrix} X & 0\\ 1 & X\\\end{bmatrix} = \begin{bmatrix} X^{n+1} & 0\\ (n+1)X^n & X^{n+1}\\\end{bmatrix}$$