Is there a good unambiguous formula for the linear operator $\frac D{e^D-1}$?
I mean,
$$x^a\to B_a(x)$$ $$\ln x \to \psi(x)$$ $$e^x\to\frac{e^x}{e-1}$$
etc.
Is there a good unambiguous formula for the linear operator $\frac D{e^D-1}$?
I mean,
$$x^a\to B_a(x)$$ $$\ln x \to \psi(x)$$ $$e^x\to\frac{e^x}{e-1}$$
etc.
Seems, something like this:
$$\frac D{e^D-1}f(x)=\frac1{2 \pi }\int_{-\infty }^{+\infty } \frac{e^{-iwx}}{e^{-i w}-1}\int_{-\infty }^{+\infty } e^{i t w} f'(t) \, dt \, dw$$