A complementary of Lukas's excellent answer.
Proposition. If $M$ is a finitely generated $A$-module, then $\operatorname{Supp}(M)=V(\operatorname{Ann}(M))$.
Proof. If $\mathfrak{p}\notin\operatorname{Supp}(M)$, then $M_\mathfrak{p}=0$. Then for any $m\in M$ and $a\in A-\mathfrak{p}$, there exists $s\in A-\mathfrak{p}$ such that $sm=0$. Thus for generators $m_1,...,m_n$, we can find $s_1,...,s_n\in A-\mathfrak{p}$ such that $s_1\cdots s_nm=0$ for any $m\in M$, thus $\mathfrak{p}$ doesn't contain $\operatorname{Ann}(M)$.
In the other side, if $\mathfrak{p}$ doesn't contain $\operatorname{Ann}(M)$, then there exists an element $t\in A-\mathfrak{p}$ such that $tm=0$ for any $m$. Therefore $M_\mathfrak{p}=0$.