Let $x,y$ be two non zero $n \times 1$ vectors. If $y^T$ denotes the transpose of the matrix $y$, then what are the eigen value of the $n \times n$ matrix $x y^T$?
Attempt: Denoting $x= \big(x_1,\cdots,x_n \big)^T, y = (y_1,\cdots,y_n)^T$
Then, To find the eigen value of $xy^T,$ we solve the system : $xy^T v = \lambda v~:~v=\big(v_1,\cdots,v_n)^T \in \Bbb R^n$
Expanding, we obtain the following equation system:
$$x_1(y_1v_1+\cdots+y_nv_n)=\lambda v_1 \\x_2(y_1v_1+\cdots+y_nv_n)=\lambda v_2 \\.\\.\\.\\x_n(y_1v_1+\cdots+y_nv_n)=\lambda v_n \\$$
How does one move ahead and solve this system?