This may not be a quicker way, but it is systematic and will work in all cases where the two moduli have no common factors. Hopefully, it also might make the use of the Extended Euclidean Algorithm with the Chinese Remainder Theorem more transparent.
We want
$$
\begin{align}
p(x)&\equiv2x+3&&\pmod{x^2+x+1}\tag{1a}\\
p(x)&\equiv5x+5&&\pmod{x^2+3x}\tag{1b}
\end{align}
$$
so we apply the Extended Euclidean Algorithm (as implemented in this answer and adapted to polynomials) to $x^2+3x$ and $x^2+x+1$:
$$
\begin{array}{c|c|c|c}
x^2+3x&1&0\\
x^2+x+1&0&1\\
2x-1&1&-1&1\\
\frac74&-\frac{2x+3}4&\frac{2x+7}4&\frac{2x+3}4
\end{array}\tag2
$$
Thus, we get
$$
(2x+7)\left(x^2+x+1\right)-(2x+3)\left(x^2+3x\right)=7\tag3
$$
So we have
$$
-\frac{(2x+3)\left(x^2+3x\right)}7\equiv\left\{
\begin{align}
&1&&\pmod{x^2+x+1}\\
&0&&\pmod{x^2+3x}
\end{align}
\right.\tag4
$$
and
$$
\frac{(2x+7)\left(x^2+x+1\right)}7\equiv\left\{
\begin{align}
&0&&\pmod{x^2+x+1}\\
&1&&\pmod{x^2+3x}\\
\end{align}
\right.\tag5
$$
Adding $2x+3$ times $(4)$ to $5x+5$ times $(5)$ yields one solution to $(1)$:
$$
\begin{align}
&\overbrace{(5x+5)\frac{(2x+7)\left(x^2+x+1\right)}7}^{\substack{0&\pmod{x^2+x+1}\\5x+5&\pmod{x^2+3x}}}\overbrace{-(2x+3)\frac{(2x+3)\left(x^2+3x\right)}7}^{\substack{2x+3&\pmod{x^2+x+1}\\0&\pmod{x^2+3x}}}\\
&=\frac{6x^4+31x^3+45x^2+53x+35}7\tag6
\end{align}
$$
The Chinese Remainder Theorem says that this is the solution mod $\left(x^2+x+1\right)\left(x^2+3x\right)$, so we can subtract $\frac67$ of the modulus to get
$$
\begin{align}
p(x)
&=\frac{6x^4+31x^3+45x^2+53x+35}7-\frac67\left(x^2+x+1\right)\left(x^2+3x\right)\\
&=\bbox[5px,border:2px solid #C0A000]{x^3+3x^2+5x+5}\tag7
\end{align}
$$