0

How to find all integer $x$ such that $x^{2}+5145x+2332\equiv 0\pmod{ 9797}$. I think $9797$ can factor, then $9797=97\cdot11$. So I can convert to $$x^{2}+5145x+2332\equiv 0\pmod{97}$$ $$x^{2}+5145x+2332\equiv 0\pmod{11}$$ How do to next? Thanks.

Bill Dubuque
  • 272,048
Kölle
  • 11

1 Answers1

1

The coefficients may be factored as follows: $$x^2+(15×7^3)x+(44×53)\equiv0\bmod(97×101)$$ Modulo $97$, the equation becomes $$x^2+4x+4\equiv(x+2)^2\equiv0\bmod97$$ Modulo $101$, $$x^2-6x+9\equiv(x-3)^2\equiv0\bmod101$$ (We have used the smallest absolute value possible for calculations to simplify the work.) Thus $x\equiv-2\bmod97\equiv3\bmod101$, or by the Chinese remainder theorem $x\equiv2326\bmod9797$.

Parcly Taxel
  • 103,344