0

Is function $ f(x)= e^{-( x+ x^{2}) } $ uniformly continuous on $ R $?


As we know for any function $f$ which is continuous on $R$ and $ \lim_{ x\to \infty} f(x) $ , $ \lim_{x \to - \infty } f(x) $ exist finitely, then $ f$ is uniformly continuous.


I am confused about the limit of $f$ at $ - \infty $.

Please help.

1 Answers1

1

$g(x)=-(x^2+x)=-(x+\frac{1}{2})^2+\frac{1}{4}$ $\Rightarrow$ $\lim_{x \to -\infty}g(x)=-\infty$

$\lim_{x \to -\infty}g(x)=-\infty$ $\Rightarrow$ $\lim_{x \to -\infty}e^{g(x)}=0$

luxerhia
  • 3,538