Suppose $\Omega := [0,1]^{\mathbb Z}$ is equipped with the product topology and endowed with the Borel $\sigma$-algebra $\mathcal B(\Omega)$ and there is a probability measure $\mathbb P$ on $(\Omega,\mathcal B(\Omega))$ such that the shift $T:\Omega \to \Omega$, $$T(\omega)(k) := \omega(k+1),\quad \omega\in\Omega,k\in \mathbb Z$$ is measure preserving, i.e. $\mathbb P = \mathbb P \circ T^{-1}$ on $\mathcal B(\Omega)$, and ergodic, i.e. $A=T^{-1}(A)$ implies $\mathbb P (A)\in\{0,1\}$ for any $A\in\mathcal B(\Omega)$. Now let $f:[0,1]^3\to[0,1]$ a measurable function and $U:\Omega \to \Omega$ the transformation defined by $$ U(\omega)(k) := f(\omega(2k-1),\omega(2k),\omega(2k+1)),\quad \omega\in\Omega,k\in\mathbb Z.$$ We consider the probability measure $\widetilde {\mathbb P}:= \mathbb P\circ U^{-1}$ where $U^{-1}$ denotes the preimage.
Then, by $T\circ U= U\circ T^2$, it holds that $(\Omega,\mathcal B(\Omega), \widetilde {\mathbb P},T)$ is still a measure-preserving dynamical system. Is it also ergodic?
Edit: What are examples of probability measures $\mathbb P$ on $\mathcal B(\Omega)$ and sets $A\in\mathcal B(\Omega)$ such that $T^{-2}(A)=A$ but $\mathbb P(A)\notin \{0,1\}$ (and hence necessarily $T^{-1}(A)\neq A$)?