Let $A, B, C$ be arbitrary sets. Prove that: $$(A\backslash B)\backslash C = A\backslash(B\backslash C) \Longleftrightarrow A\cap C = \emptyset$$
The left hand side of the equivalence:
$(A\backslash B)\backslash C = A\backslash(B\backslash C)$
is defined by the following logical expression
$\begin{align} x\in (A\backslash B)\land x\notin C &\Leftrightarrow x\in A \land \lnot(x\in B \land x\notin C)\\ &\Leftrightarrow x\in A\land (x\notin B \lor x\in C)\\ &\Leftrightarrow (x\in A \land x\notin B)\lor(x\in A \land x\in C)\\ &\Leftrightarrow x\in(A\backslash B)\lor x\in (A\cap C) \end{align}$
So I could rewrite the LHS as the following equivalence:
$x\in (A\backslash B)\land x\notin C \Leftrightarrow x\in(A\backslash B)\lor x\in (A\cap C)$
The right hand side of the equivalence:
$A\cap C = \emptyset$
is analogically defined by the expression:
$x\in A \Rightarrow x\notin C$
The whole problem, rewritten: So the whole problem narrows down to proving: $$\Big(x\in (A\backslash B)\land x\notin C \Leftrightarrow x\in(A\backslash B)\lor x\in (A\cap C) \Big)\stackrel{?}{\equiv} \Big(x\in A \Rightarrow x\notin C \Big)$$
Best further approach: My question is generally: What would be the best and most comprehensive further approach as of this point?
- rigorous proof based on boolean algebra with the given result and equivalent transformations;
- splitting the proof into two directions: "$\Longrightarrow$" and "$\Longleftarrow$"
- proof by contradiction (using terms like "suppose", "for an arbitrary" etc.)
- other options?
I know these are all the same, but I'd love to keep going "the rigorous" way with equivalent transformations in the logical expressions. What would your advice be? Thanks in advance!
P.S. I'm also open for corrections of my notation (especially the $\equiv$ symbol, am I using that right?)