The question is:
Prove that: $2tan^{-1}2=\pi-cos^{-1}\frac{3}{5}$ Hint: use the fact that $tan(\pi-x)=-tanx$
I did the question without using the Hint, but I don't know how to do it using the hint.
Quick working out of what I've done:
\begin{aligned} \text { If } \theta &=\tan ^{-1} 2 \\ \tan \theta &=2 \\ 0 & < \theta < \frac{\pi}{2} \end{aligned}
\begin{aligned} \cos 2 \theta &=2 \cos ^{2} \theta-1 \\ &=2 \times\left(\frac{2}{\sqrt{5}}\right)^{2}-1 \\ &=\frac{3}{5} \\ 2 \theta =& \cos ^{-1} \frac{3}{5}, \quad \text { since } 0 < 2\theta < \pi \end{aligned}
\begin{array}{l} 2 \tan ^{-1} 2=\cos ^{-1} \frac{3}{5} \text { . } \\ \text { Note: } \cos ^{-1} x \text { has point symmetry } \\ \text { in }\left(0, \frac{\pi}{2}\right) \text { . } \end{array}
$$ \begin{array}{l} \cos ^{-1} x+\cos ^{-1}(-x)=\pi \\ \cos ^{-1} \frac{3}{5}=\pi-\cos ^{-1}\left(-\frac{3}{5}\right) \\ \therefore \quad 2 \tan ^{-1} 2=\pi-\cos ^{-1}\left(-\frac{3}{5}\right) \end{array} $$
But I didn't use the Hint given in the question for this working out. How do I use the hint? Thank you !