As shown in this post, $$ \sum_{k=1}^n x^k = x \sum_{k=1}^{n} \binom{n}{k} (x-1)^{k-1}$$
For RHS, notice $x= \left(1+( x-1) \right)$ and using this we get,
$$ \sum_{k=1}^n x^k = \sum_{k=1}^{n} \binom{n}{k} (x-1)^{k-1} + \sum_{k=1}^{n} \binom{n}{k} (x-1)^{k} \tag{1}$$
For first term,
$$ \sum_{k=1}^{n} \binom{n}{k} (x-1)^{k-1} \to \binom{n}{1} +\sum_{k=2}^{n} \binom{n}{k} (x-1)^{k-1} \tag{2} $$
Sub, $k-1 \to j$
$$\sum_{k=2}^{n} \binom{n}{k} (x-1)^{k-1} \to + \sum_{j=1}^{n-1} \binom{n}{j+1} (x-1)^j \to + \sum_{k=1}^{n-1} \binom{n}{k+1} (x-1)^k \tag{3}$$
Using (1), (2), and (3)
$$ \sum_{k=1}^n x^k = \binom{n}{1} + \sum_{k=1}^{n-1} \binom{n}{k+1} (x-1)^k + \sum_{k=1}^{n} \binom{n}{k} (x-1)^{k} $$
Or,
$$ \sum_{k=1}^n x^k= \binom{n}{1}+ \sum_{k=1}^{n-1} \binom{n+1}{k+1} (x-1)^k + (x-1)^{n}$$ =
Now apply the $P^j$ to both sides (4) where $P$ is an operator defined as $x \frac{d}{dx}$ and evaluate at x=1, see this post for more details. For LHS,
$$ \sum_{k=1}^n x^k \xrightarrow[]{P^j , x=1} \sum_{k=1}^n k^j $$
From this answer here,
$$P^j =\sum_{i=1}^j S(j,i) D_{1}^i$$
Where $D_1^i = \frac{d^i}{dx^i}|_{x=1}$ and S(n,k) is stirling number of second kind
Writing (4) out explicitly,
$$ \sum_{k=1}^n k^j = \sum_{i=1}^j S(j,i) D_{1}^i \left[ \binom{n}{1}+ \sum_{k=1}^{n-1} \binom{n+1}{k+1} (x-1)^k + (x-1)^n \right]$$
Now, consider
$$ D_{1}^i \left[\binom{n}{1}+ \sum_{k=1}^{n-1} \binom{n+1}{k+1} (x-1)^k + (x-1)^n \right] $$
We can easily evaluate this by considering taylor series of the inside term, call:
$$ f= \binom{n}{1}+ \sum_{k=1}^{n-1} \binom{n+1}{k+1} (x-1)^k + (x-1)^n $$
Then, the taylor polynomial of $f$ around $x=1$ is given as:
$$ f = \sum_{k=0}^{n+1} \frac{d^k f}{dx^k}|_1 \frac{(x-1)^k}{k!}$$
By comparing coefficients we can easily evaluate the derivative,
$$ D_{1}^i \left[\binom{n}{1}+ \sum_{k=1}^{n-1} \binom{n+1}{k+1} (x-1)^k + (x-1)^n \right] = \begin{cases} \binom{n}{0} , i=0 \\ i! \binom{n+1}{i+1} , i>0 \end{cases}$$
For $i \in \mathbb{N}$, hence:
$$ \sum_{k=1}^n k^j = \sum_{i=1}^j S(j,i) i! \binom{n+1}{i+1} $$
With all of that in mind,
- Is my proof right?
- What ways can I make it better?
- Are there any more simplification applicable?