A little stumped on this problem, any help would be greatly appreciated.
Show that for all $a,b,c \in \mathbb{Z}$, if $b \mid a$ and $c \mid a$ and $\mathrm{gcd}(b,c) = 1$, then $bc \mid a$.
A little stumped on this problem, any help would be greatly appreciated.
Show that for all $a,b,c \in \mathbb{Z}$, if $b \mid a$ and $c \mid a$ and $\mathrm{gcd}(b,c) = 1$, then $bc \mid a$.
We are given $a=nb$, $a=mc$, $1=ub+vc$. Then $n=nub+nvc=ua+nvc=(um+nv)c$, hence $a=(um+nv)bc$.
If the highest power of prime $p$ in $a,b,c$ are $r_a,r_b,r_c$ respectively,
$r_a$ must be $\ge$ max$(r_b,r_c)$
$\implies $lcm $(b,c)$ divides $a$
If gcd$(b,c)=1,$lcm $(b,c)=b\cdot c$