0

Let, $n\in \mathbb{N}$ and $p$ be a prime.

If $f(x)=\sum_{i=1}^{r} a_{i} x^{i}$ and $g(x)=\sum_{i=1}^{s} b_{i} x^{i}$ be polynomial in $\mathbb{Z}_{p^{n}}$ such that $f(x)g(x)=0$ ,

(1) $a_{i} b_{j} =0$,for all $i,j$

(2) $a_{i} b_{j} \neq 0$,for some $i,j$

My try, $a_{1} b_{1}=0 $

Either $a_1=0$ or $b_1=0$ or they are divisor of zero.

Then $a_{1} b_{2}+a_{2} b_{1}=0 $

Now, if $a_1=0$, then $a_{2} b_{1}=0 $

After, $a_{1} b_{3}+a_{2} b_{2}+a_{2} b_{3} = 0 $

If, $a_1=0$ then $a_{2} b_{2}+a_{2} b_{3} = 0 $

My thought here, if $\mathbb{Z_{p^n}}$ is $\mathbb{Z_2} $ here, then, I think option (2) is true if we take all of $a_2,b_2,b_3$ non zero.

But is option (1) the answer?

I am really in doubt here.

Please anyone help!

A learner
  • 2,831
  • 2
  • 8
  • 18

0 Answers0