I'm currently reading the proof the theorem: if a Dirichlet serie converges at some point, $s_0$, then the serie is uniformly convergent in a sector around that point. (Montgomery and Vaughan: Multiplicative Number Theory I, Thr 1.1).
But there are small things I don't understand.
So, first we define $R(u)=\sum_{n>u}a_n n^{-s_0}$ to be the remainter term of a Dirichlet serie. We note that $a_n=(R(n-1)-R(n))n^{s_0}$. Then the proof say: "so by partial summation:
\begin{align} \sum^{N}_{n=M+1}a_nn^{-s}&=\sum^{N}_{n=M+1}(R(n-1)-R(n))n^{s_0-s}\\ &=R(M)M^{s_0s}-R(N)N^{s_0-s}-\sum^{N}_{n=M+1}R(n-1)((n-1)^{s_0-s}-n^{s_0-s})" \end{align}
Maybe someone can explain why the last equal-sign holds.
The next question is how I can justify this bound:
$$\int^{\infty}_{M} u^{\sigma_0 - \sigma -1} \,du \leq \frac{1}{\sigma - \sigma_0}$$
when $|R(u)|\leq\epsilon$ for all $u\geq M$ and if $\sigma>\sigma_0$?