My question askes me to find an explicit formula for $$ \sum_{n=0}^{\infty}{x^{n^2}} \quad\left(\forall x \in (0,1)\right)$$ And I feel it kind of interesting to find an appropriate f(x) that satisfies $$ \lim_{x \to 1^{-} }\frac{\sum_{n=0}^{\infty}{x^{n^2}}}{f(x)}=1 $$ Both questions make me feel puzzled, and I tried $$ \sum_{n=0}^{\infty}{x^{n^2}}<\sum_{n=0}^{\infty}{x^n}=\frac{1}{1-x} $$ Hence I guess maybe $$ \sum_{n=0}^{\infty}{x^{n^2}}\sim\frac{C_{1}}{\sqrt{1-x}} \quad \text{when} \quad x \to 1^{-}$$ or at least $$ \sum_{n=0}^{\infty}{x^{n^2}} \sim \frac{C_{2}}{(1-x)^\alpha} \quad \text{for} \quad \text{some} \quad \alpha$$ Any help or recommendation related would be greatly appreciated.
Thanks a lot for your focus.