Find all solutions, if any, to the system of congruences $$\Bigg\{ \begin{array}{c} x \equiv 1 (\mod 6)\\ x \equiv 7 (\mod 9)\\ x \equiv 4 (\mod 15)\\ \end{array}$$ we can see that
$ x \equiv 1 \pmod 6 \implies \left\{ \begin{array}{l} x\equiv 1 \pmod 2 \\ x \equiv 1 \pmod 3 \end{array} \right.$
as well as $ x \equiv 7 \pmod 9\\ \qquad \Rightarrow \quad x=7+9k\\ \qquad \Rightarrow \quad x=1+3(2+3k)\\ \qquad \Rightarrow \quad x\equiv 1 \pmod 3\\ $
and $ x \equiv 4 \pmod{15} \implies \left\{ \begin{array}{l} x\equiv 4 \pmod 5 \\ x \equiv 1 \pmod 3 \end{array} \right. $
After removal of redundant congruences and picking the one with the highest power of 3 we are left with:
$ \Bigg\{ \begin{array}{c} x \equiv 1 \pmod 2\\ x \equiv 7 \pmod {3^2}\\ x \equiv 4 \pmod 5\\ \end{array} $
Now we reduced it to standard CRT problem.
$ x=2k+1 \\ 2k+1 \equiv 7\pmod{9}\\ 2k \equiv 6\pmod{9}\quad \gcd{(2,9)}=1\\ k\equiv 3\pmod{9}\\ k=9\cdot l+3$
$x=2\cdot(9\cdot l+3)+1=18l+7$
$ 18l+7\equiv 4\pmod{5}\\ 18l\equiv -3\pmod{5}\\ 18l\equiv 2\pmod{5}\\ 3l\equiv 2\pmod{5}\\ \quad \Rightarrow \quad 7\pmod{5}\\ \quad \Rightarrow \quad 12\pmod{5} \quad \gcd{(3,5)}=1\\ l\equiv 4\pmod{5}\\ l=5\cdot m +4\\ $
The solution to the original system:
$ x=2\cdot(9\cdot (5\cdot m +4)+3)+1=90\cdot m+79\\ x\equiv 79\pmod{90} $
with the smallest x = 79
Is it a correct approach?