The given matrix has the peculiar form
$$M=\left(\begin{array}{rr}\alpha & -\overline{\beta }\\ \beta & \overline{\alpha}\end{array}\right)$$
with $\alpha=a+ib=0+7i, \beta=c+id=6-2i$.
It is known that the correspondence with the quaternions :
$$\left(\begin{array}{rr}\alpha & -\overline{\beta }\\ \beta & \overline{\alpha}\end{array}\right) \ \ \ \ \leftrightarrow \ \ \ \
q=a+\underbrace{b\mathbf{i}+c\mathbf{j}+d\mathbf{k}}_{\text{vector part } \ v}$$
is an isomorphism (see here). It is also known that :
$$
e^q = e^{a+\mathbf{v}}=e^a \left( \cos |\mathbf{v}| +\dfrac{\mathbf{v}}{|\mathbf{v}|} \,\sin |\mathbf{v}| \right)
\tag{1}$$
where $|...|$ is the Euclidean norm. See a proof here.
In our case, matrix $M$ is mapped onto a pure quaternion (real part $a=0$).
We can now conclude from (1), coming back to matrices through the isomorphism given above, with $|v|=\sqrt{b^2+c^2+d^2}=\sqrt{89}$, that :
$$\exp(M)=\cos(\nu)I+\frac{\sin(\nu)}{\nu}M \ \ \ \text{with} \ \ \ \nu:=|v|=\sqrt{89}$$