I wish to show that $\cos^2(\frac{\pi}{5})+\cos^2(\frac{3\pi}{5})=\frac{3}{4}$
I know the solutions to $z^5+1=0$ are $-1$, $e^{i\frac{\pi}{5}}$, $e^{-i\frac{\pi}{5}}$, $e^{i\frac{3\pi}{5}}$, $e^{i\frac{-3\pi}{5}}$ and that
$z^5+1=(z+1)(z^4-z^3+z^2-z+1)$
which means that the solutions to $z^4-z^3+z^2-z+1=0$ are $e^{i\frac{\pi}{5}}$, $e^{-i\frac{\pi}{5}}$, $e^{i\frac{3\pi}{5}}$, $e^{i\frac{-3\pi}{5}}$
and so $z^4-z^3+z^2-z+1=(z-e^{i\frac{\pi}{5}})$$(z-e^{-i\frac{\pi}{5}})$ $(z-e^{i\frac{3\pi}{5}})$$(z-e^{i\frac{-3\pi}{5}})$
but I am not sure where to go from there.