I'm trying to solve exercise 5.19 from Elementary Fluid Dynamics by D. J. Acheson. The exercise is as follows:
Seek an exact, steady solution to the Navier-Stokes equations of the form
$$ \mathbf{u} = -\frac{1}{2}\alpha r \mathbf{e}_r + u_\theta (r) \mathbf{e}_{\theta} + \alpha z \mathbf{e}_z $$
where $\alpha$ is a positive constant. Note that $\boldsymbol{\omega} = \omega \mathbf{e}_z$, where
$$ \omega = \frac{1}{r}\frac{d}{dr}(ru_{\theta}) $$
Verify that $\nabla \cdot \mathbf{u} = 0$, and show that the equations of motion imply
$$ -\frac{1}{2}\alpha r \omega = \nu \frac{d \omega}{d r} $$
Deduce that
$$ u_{\theta} = \frac{\Gamma}{2\pi r}\left(1 - e^{-\alpha r^2 / 4\nu}\right) $$
where $\Gamma$ is an arbitrary constant.
So, here's what I've done so far. It's easy enough to verify that $\nabla \cdot \mathbf{u} = 0$. The divergence in cylindrical coordinates is:
$$ \nabla \cdot \mathbf{u} = \frac{1}{r}\frac{\partial}{\partial r}(ru_r) + \frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} $$
Inserting the velocity components I get:
$$ \nabla \cdot \mathbf{u} = \frac{1}{r}(-\alpha r) + \alpha = 0 $$
To show that $-\frac{1}{2}\alpha r \omega = \nu \frac{d \omega}{d r}$ I insert the velocity components into the momentum equation of the $\theta$-component:
$$ \frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + u_z\frac{\partial u_{\theta}}{\partial z} + \frac{u_r u_{\theta}}{r} = -\frac{1}{\rho r}\frac{\partial P}{\partial \theta} + \nu \left[ \frac{1}{r}\frac{\partial}{\partial r}\left( r \frac{\partial u_{\theta}}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_{\theta}}{\partial \theta^2} - \frac{u_{\theta}}{r^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \theta} \right] $$
The pressure term on the right side equals zero since the pressure doesn't vary in the $\theta$-component. Inserting for the velocity components yields:
$$ -\frac{\alpha r}{2} \left[ \frac{\partial u_{\theta}(r)}{\partial r} + \frac{1}{r} u_{\theta}(r) \right] = \nu \left[ \frac{1}{r} \frac{\partial u_{\theta}(r)}{\partial r} + \frac{\partial^2 u_{\theta}(r)}{\partial r^2} - \frac{1}{r^2}u_{\theta}(r) \right] $$
Since
$$ \omega = \frac{1}{r}\frac{d}{dr}(ru_{\theta}) = \frac{u_{\theta}}{r} + \frac{\partial u_{\theta} (r)}{\partial r} $$ $$ \frac{d \omega}{d r} = -\frac{1}{r^2}u_{\theta}(r) + \frac{1}{r}\frac{\partial u_{\theta}(r)}{\partial r} + \frac{\partial^2 u_{\theta}(r)}{\partial r^2} $$
we have that
$$ -\frac{1}{2}\alpha r \omega = \nu \frac{d \omega}{d r} $$
What I need help with figuring out is how to get the following expression for the $\theta$-component velocity:
$$ u_{\theta} = \frac{\Gamma}{2\pi r}\left(1 - e^{-\alpha r^2 / 4\nu}\right) $$