Given a bounded subset of $\mathbb{R}$, let $\operatorname{st}(^\ast A)$ be the set of the standard parts of all elements in $^\ast$-transform of $A$, $\overline{A}$ is the closure of $A$.Is it true $\operatorname{st}(^\ast A) = \overline{A}$?
It seems to me it's true $\overline{A} \subseteq \operatorname{st}(^\ast A)$.For every $x \in \overline{A}$, there is a sequence $r = \{r_i\}_{i \in \mathbb{N}} \in ^\ast A$ such that $r_i \in A$ for all $i \in \mathbb{N}$ and $\lim_{k \to \infty} r_k = x$. $\operatorname{st}(r) = x$, because for an arbitary $\epsilon$, $\{ i \in \Bbb{N}:|r_i - x|>\epsilon\}$ is finite.
But what about the other direction?