Let $\textbf{Mon}(\textbf{Alg},\otimes_{\mathbb{k}},\mathbb{k})$ be the category of monoids in the monoidal category of algebras $\textbf{Alg}$, with product $\otimes_{\mathbb{k}}$ and unit element $\mathbb{k}$. I want to show that $\textbf{Mon}(\textbf{Alg},\otimes_{\mathbb{k}},\mathbb{k}) = \textbf{CAlg}$, but the thing I obtained is $\textbf{Mon}(\textbf{Alg},\otimes_{\mathbb{k}},\mathbb{k}) = \textbf{Alg}$.
This is because $X \in \textbf{Mon}(\textbf{Alg},\otimes_{\mathbb{k}},\mathbb{k})$ is an algebra with an associative multiplication $X \otimes X \rightarrow X$ and a unit $u: \mathbb{k} \rightarrow X$. So, the multiplication is only associative, not commutative.
How can it turn out to be commutative in order to obtain $X \in \textbf{CAlg}$?