Suppose we have $n$ $i.i.d$ random variables $X_{1},\ldots,X_{n}$ all distributed uniformly, $X_{i} \sim \mathrm{Uniform}\left(0,1\right)$ .
- We want to find the expected value of $\mathbb{E}[Y_{n}]$ where $Y_{n} = \max\left\{X_{1},\ldots,X_{n}\right\}$.
- Here I got $F_Y\left(y\right) = \int\mathrm{d}x_{1}\ldots\int\mathrm{d}x_{n} = \left[F_{X}\left(y\right)\right]^n $ but to get $f_{Y}\left(y\right)$ i need to differentiate $F_{Y}\left(y\right)$ with respect to $y$ but how do i differentiate $\left[F_{X}\left(y\right)\right]^{n}$ with respect to $y\,?$.