If $\operatorname{gcd}(a,b)=1$ then $\operatorname{gcd}(3a+b,a+3b)=$?
I try to solve it.
We are two cases :
If $a$ be even and $b$ is odd number. Then $\operatorname{gcd}(3a+b,a+3b)=1$
$a$ and $b$ be odd numbers.then $\operatorname{gcd}(3a+b,a+3b)$ divided 8...
I guess $\operatorname{gcd}(3a+b,a+3b)=2$.