It is also easy to prove that if $f: X \rightarrow \mathbb{R}$ is measurable, then $\{(x, t): t=f(x)\} \in \mathcal{F} \otimes \mathcal{B}(\mathbb{R})$.
Since $f: X \rightarrow \mathbb{R}$ is measurable, we have that $g: X \times \mathbb{R} \rightarrow \mathbb{R} $ defined by $g(x,y)= y-f(x)$ is $\mathcal{F} \otimes \mathcal{B}(\mathbb{R})$-measurable.
So $g^{-1}(\{0\}) \in \mathcal{F} \otimes \mathcal{B}(\mathbb{R})$. But $g^{-1}(\{0\}) = \{(x, t): t=f(x)\}$.
So $\{(x, t): t=f(x)\} \in \mathcal{F} \otimes \mathcal{B}(\mathbb{R})$.