2

Problem

Suppose that $ Z_1 $ and $ Z_2 $ are independent with common density $$ f_Z(z) = \begin{cases} e^{-z} & \text{ if } z > 0 \\ 0 & \text{ otherwise }. \end{cases} $$ Let $ X_1 = \min\left\{ Z_1, Z_2 \right\} $ and $ X_2 = \max\left\{ Z_1, Z_2 \right\} $. Compute $ \mathrm{E}\left[ X_2 - X_1 | X_1 = x_1 \right] $.

Attempted Solution

Proceed with using the law of iterated expecation with the following finite partition of the sample space \begin{gather*} D_1: \left\{ Z_1 > Z_2 \right\} \\ D_2: \left\{ Z_2 > Z_1 \right\} \\ D_3: \left\{ Z_1 = Z_2 \right\} \end{gather*} We should have \begin{align*} \mathrm{E}\left[ X_2 - X_1 | X_1 = x_1 \right] &= \mathrm{E}\left[ X_2 - X_1| D_1, X_1 = x_1 \right] \Pr(D_1) \\ &\quad+ \mathrm{E}\left[ X_2 - X_1| D_2, X_1 = x_1 \right] \Pr(D_2) \\ &\quad+ \mathrm{E}\left[ X_2 - X_1| D_3, X_1 = x_1 \right] \Pr(D_3) \\ &= \mathrm{E}\left[ X_2 - X_1| Z_1 > Z_2, X_1 = x_1 \right] \Pr(Z_1 > Z_2) \\ &\quad+ \mathrm{E}\left[ X_2 - X_1| Z_2 > Z_1, X_1 = x_1 \right] \Pr(Z_2 > Z_1) \\ &= \mathrm{E}\left[ Z_1 - Z_2 | Z_2 = x_1 \right]\Pr(Z_1 > Z_2) \\ &\quad+ \mathrm{E}\left[ Z_2 - Z_1 | Z_1 = x_1 \right](1 - \Pr(Z_1 > Z_2)) \\ &= \left( \mathrm{E}\left[ Z_1 | Z_2 = x_1 \right] - x_1 \right)\Pr(Z_1 > Z_2) \\ &\quad+ \left( \mathrm{E}\left[ Z_2 | Z_1 = x_1 \right] - x_1 \right)(1 - \Pr(Z_1 > Z_2)). \end{align*} Where we have employed that $P(D_3|X_1 = x_1) = 0$ since $ Z_1 = Z_2 $ occurs with measure $0$ probability and that $\Pr(Z_2 > Z_1) = 1 - \Pr(Z_1 \ge Z_2) = 1 - \Pr(Z_1 > Z_2)$. Notice that $ Z_1, Z_2 $ are identical and independent with mean $ 1 $ (since they are exponential distribution with $ \lambda = 1 $, hence $ \mathrm{E}[Z_i] = \frac{1}{\lambda} = 1 $). Therefore we have \begin{gather*} \mathrm{E}\left[ Z_1 | Z_2 = x_1 \right] = \mathrm{E}[Z_1] = 1 \\ \mathrm{E}\left[ Z_2 | Z_1 = x_1 \right] = \mathrm{E}[Z_2] = 1 \end{gather*}

We can conclude that \begin{align*} \mathrm{E}\left[ X_2 - X_1 | X_1 = x_1 \right] &= \left( \mathrm{E}\left[ Z_1 | Z_2 = x_1 \right] - x_1 \right)\Pr(Z_1 > Z_2) + \left( \mathrm{E}\left[ Z_2 | Z_1 = x_1 \right] - x_1 \right)(1 - \Pr(Z_1 > Z_2)) \\ &= \left( 1 - x_1 \right)\Pr(Z_1 > Z_2) + \left( 1 - x_1 \right)(1 - \Pr(Z_1 > Z_2)) \\ &= 1 - x_1 \end{align*}

Question

Now here is the issue, the answer is supposed to be $ \mathrm{E}\left[ X_2 - X_1 | X_1 = x_1 \right] = 1 $. Both a friend and I have gone through the attempted solution above but could not find the error with it, yet it gives the wrong answer. Can anyone help out with identifying where the error is and how you might modify the approach to get the right answer?

I'd also be open to hear if Math StackExchange could find a different solution method (preferably one that is as succinct).

StubbornAtom
  • 17,052
sticke4
  • 23
  • 3
  • 1
    $X_2-X_1$ is independent of $X_1$ (cf. https://math.stackexchange.com/q/2240822/321264), so the required expectation is just $E[X_2-X_1]=E[|Z_1-Z_2|]$. – StubbornAtom Nov 11 '20 at 07:50
  • Thanks for the link. The discussion and answers are really interesting! – sticke4 Nov 11 '20 at 20:39

1 Answers1

1

Your evaluation of $\mathsf E(X_2{-}X_1\mid X_1{=}x, Z_2{>}Z_1)$ is awry.

The event of $\{X_1{=}x, Z_2{>}Z_1\}$ is the event of $\{Z_1{=}x,Z_2{>}x\}$. Also under that condition, then $X_2-X_1$ will equal $Z_2-Z_1$

$$\begin{align} \mathsf E(X_2{-}X_1\mid X_1{=}x, Z_2{>}Z_1) &= \mathsf E(Z_2{-}Z_1\mid Z_1{=}x,Z_2{>}x) \\ &=\mathsf E(Z_2\mid Z_2{>}x,Z_1{=}x)-\mathsf E(Z_1\mid Z_2{>}x,Z_1{=}x) \end{align}$$

Next use that the $Z_\star$ are independent, and recall that exponential distributed random variables have the memoryless property.

$$\begin{align} \mathsf E(X_2{-}X_1\mid X_1{=}x, Z_2{>}Z_1) &=\mathsf E(Z_2\mid Z_2{>}x)-\mathsf E(Z_1\mid Z_1{=}x) \\ &= \mathsf E(Z_2\mid Z_2{>}x)-x\\ &= \mathsf E(Z_2)\\&=1 \end{align}$$

Likewise $\hspace{12ex}\mathsf E(X_2{-}X_1\mid X_1{=}x, Z_1{>}Z_2)=1$

Therefore:...

$$\begin{align}\mathsf E(X_2{-}X_1\mid X_1{=}x)&= {\mathsf E(X_2{-}X_1\mid X_1{=}x, Z_2{>}Z_1)\,\mathsf P(Z_2{>}Z_1)\\+\mathsf E(X_1{-}X_2\mid X_2{=}x, Z_1{>}Z_2)\,\mathsf P(Z_1{>}Z_2)}\\&=1\end{align}$$

Graham Kemp
  • 129,094
  • How did you get $\mathrm{E}(Z_2 | Z_2 > x) - x = \mathrm{E}(Z_2)$. I understand that the memoryless property let's drop the conditional portion but how can we drop the minus $x$ portion. – sticke4 Nov 11 '20 at 20:48
  • 1
    @sticke4 The memoryless property is that the expected value of the exponential random variable when given that it is greater than a constant will equal the expected value of the random variable plus that constant. $$\mathsf E(Z_2\mid Z_2>x)=\mathsf E(Z_2)+x$$ – Graham Kemp Nov 11 '20 at 22:24