A bit rusty on my calculus, trying to figure out whether this is correct.
I tried proving $\underset{x \rightarrow \infty}{\lim} (1-e^{-x})^{x} = 1$ without using L'hôpital.
$$\lim_{x \rightarrow \infty} \left(1-e^{-x}\right)^{x}=\lim_{x \rightarrow \infty}\left(1- \frac{x\cdot e^{-x}}{x}\right)^{x}\overset{(1)}{=}\lim_{x \rightarrow \infty} e^{e^{-x}\cdot x}=e^{\lim_{x \rightarrow \infty} e^{\frac{x}{e^{x}}}}=e^{0}=1$$
I'm a little unsure about the transition I marked as $(1)$.