0

I would like to prove it using Euler's Theorem, which states that if $\gcd(a,n)=1$,then $a^{\phi(n)}=1 \pmod{n}$. Then, $480$ should be factored, but I am unsure how to proceed with the proof. Thanks in advance.

qt_314
  • 31

1 Answers1

2

Hint: $480 = 2^5 \cdot 3 \cdot 5$. By the Chinese remainder theorem, we see that $a^k \equiv 1 \pmod {480}$ if and only if we have $$ \begin{cases} a^k \equiv 1 \pmod{2^5},\\ a^k \equiv 1 \pmod 3,\\ a^k \equiv 1 \pmod 5. \end{cases} $$

Ben Grossmann
  • 225,327