0

Let $a_n \ge 0$ for all $n\in \Bbb N$. Let $\{x_n\}$ be a sequence of real numbers such that $|x_{n+1}-x_n|<a_n$ for all $n\in \Bbb N$. If $\sum a_n$ is convergent then prove that $\{x_n\}$ is a Cauchy sequence in $\Bbb R$.

We have for any $p=1,2,\cdots$ that $|x_{n+p}-x_n|\le a_n+a_{n+1}+\cdots +a_{n+p-1}\le \sum_{k=1}^{n+p-1} a_k$. From here how can I show that $\{x_n\}$ is Cauchy ?

Any hint please?

Arctic Char
  • 16,007
Empty
  • 13,012

1 Answers1

2

Hint: bound $a_n+\cdots+a_{n+p-1}\leq\sum_{k=n}^{\infty}a_k=\sum_{k=1}^{\infty}a_k-\sum_{k=1}^na_n$.