Show:
$$E(X) = \int_{0}^\infty P(X > x)dx - \int_{0}^\infty P(X < -x)dx$$
$E[X]$ is the expectation value of the Random Variable $X$
$P$ is the probability
We know
$$E(X) = \int_{-\infty}^\infty xf(x)dx$$
$$f(x)dx = \frac{\mathrm{d}}{\mathrm{d}x}P(X\le x)$$
So,
$$
E(X) =-\int_0^\infty x\,\frac{\mathrm{d}}{\mathrm{d}x}P(X\le x)\,\mathrm{d}x
$$
$$ E(X) =-\int_0^\infty x\,\mathrm{d}P(X\le x) $$ Using Integration by parts: $$ \mathrm{E}(X)=-\lim_{x\to\infty}x\,P(X\le x)+\int_0^\infty P(X\le x)\,\mathrm{d}x $$
However, I do not know how to proceed further. Help would be greatly appreciated.