A complex number $z $ is called an algebraic number if there is $P \in\mathbb {Q }[X]\setminus\{0\} $ such that $P (z) = 0$.
We say that $x\in\mathbb {C} $ is an algebraic integer algebraic integer if there exists a monic polynomial $P\in\mathbb {Z} [X] $ unitary such that $P (x) = 0$.
we fix an algebraic number $z $. The set $$ I (z) = \{P \in\mathbb {Q}[X]\ :P (z) = 0\} $$ is an ideal of $\mathbb {Q}[X]$. There is therefore a unique monic polynomial $\Pi_z \in\mathbb {Q}[X]$, called minimal polynomial of $z$, such that $$I (z) = \{\Pi_z Q :Q \in\mathbb {Q}[X]\}.$$
We admit the following results:
(1) The set of algebraic integers is a subring of $\mathbb {C} $.
(2) If $x \in\mathbb {Q}$ is an algebraic integer, then $x\in\mathbb {Z}$.
Problem
Show that if $z\in\mathbb { C } $ is an algebraic integer then $\Pi_z \in\mathbb {Z} [X] $.
An idea please