For the second case,
$\begin{align}\frac1{\sqrt2}<x<1 &\Rightarrow \frac\pi4<\sin^{-1}x<\frac\pi2 \\&\Rightarrow \frac\pi2<2\sin^{-1}x < \pi \\&\Rightarrow 0<\pi-2\sin^{-1}x <\frac{\pi}{2}\end{align}$.
Now let $\theta =\pi-2\sin^{-1}x $ and it lies in the range $(0,\frac\pi2)$. This is done to make the angle lie in the principal range $[-\frac\pi2,\frac\pi2]$ of the arcsine function.
$\begin{align}&\Rightarrow x = \sin\frac{\pi-\theta}{2 } = \cos\frac\theta2\\
&\Rightarrow 2x\sqrt{1-x^2} = 2\cos\frac\theta2\sin\frac\theta2 = \sin\theta \\
&\Rightarrow 2x\sqrt{1-x^2}= \sin(\pi-2\sin^{-1}x) \color{blue}{\text{ and the angle lies in the principal range of arcsine }}\\
&\Rightarrow\boxed{2\sin^{-1}x = \pi-\sin^{-1}(2x\sqrt{1-x^2})}\end{align}$
Similarly do with the third case, making the angle lie within the required range.