I wanted to find the limit: $\lim_{n \to +\infty}(\frac{1^p + 2^p + ... + n^p}{n^p} - \frac{n}{p + 1})$, where $p \in \mathbb{N}$.
I saw that I could use Stolz–Cesàro theorem, where $x_n = (p + 1)(1^p + 2^p + ... + n^p) - n^{p + 1}$, and $y_n = n^p(p + 1)$ tends to +$\infty$.
So, here we are:
$\lim _{ x\rightarrow \infty }{ \frac { { x }_{ n }-{ x }_{ n - 1 } }{ { y }_{ n }-{ y }_{ n - 1 } } } = \lim _{ x\rightarrow \infty }{ \frac { ( p+1 ) { n }^{ p }-{n}^{ p+1 }+{ (n-1) }^{ p+1 } }{ ( p+1 ) ( { n }^{ p }-{ (n-1) }^{ p } ) } } = \lim _{ x\rightarrow \infty }{ \frac { ( p+1 )-n+(n-1)(\frac{n - 1}{n})^p }{ ( p+1 ) ( 1-{ (\frac{n-1}{n}) }^{ p } ) } } = \lim _{ x\rightarrow \infty }{ \frac { p }{ 0 } } $ (because $(\frac{n - 1}{n})^p$ tends to 1).
But as I understood here, limit of this sequence is $\frac{1}{2}$.
Where did I go wrong in my reasoning and why is my answer not correct?