There exists a deductive system which derives exactly the tautologies of classical propositional logic while using finitely many at-most-unary rules and axiom schemata.
We will restrict our attention to classical propositional logic given by the two connectives $\neg, \rightarrow$, where other connectives are defined as abbreviations, as customary in Hilbert-style calculi (besides, a nigh-identical strategy would work even if we gave the other connectives explicitly). We abbreviate $\neg (A \rightarrow \neg B)$ as $A \wedge B$. For parenthesis-management we write $\wedge$ and $\rightarrow$ as right-associative, so that $A \wedge B \wedge C$ denotes $A \wedge (B \wedge C)$, while $A \rightarrow B \rightarrow C$ denotes $A \rightarrow (B \rightarrow C)$.
Consider the deductive system (called "our system" from here on) that has the following (nullary and unary) rules of inference.
Axiom rules
We call a formula a logical axiom if it occurs as a substitution instance of one of the following: $P \rightarrow (Q \rightarrow P), (P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow P \rightarrow R, (\neg Q \rightarrow \neg P) \rightarrow P \rightarrow Q$. Let $\varphi$ denote a logical axiom. We admit the following inference rules:
- Infer $\varphi$.
- From $C$ infer $\varphi \wedge C$.
- From $C$ infer $C \wedge \varphi \wedge \varphi$.
Modus ponens rules
- From $C \wedge D \wedge (A \wedge (A \rightarrow B) \wedge E)$ infer $C \wedge D \wedge (A \wedge (A \rightarrow B) \wedge B \wedge E)$.
- From $C \wedge D \wedge ((A \rightarrow B) \wedge A \wedge E)$ infer $C \wedge D \wedge ((A \rightarrow B) \wedge A \wedge B \wedge E)$.
Shunting rules
- From $(A \wedge C) \wedge D \wedge E$ infer $C \wedge (A \wedge D) \wedge E$.
- From $(A \wedge C) \wedge D \wedge E$ infer $C \wedge D \wedge (A \wedge E)$.
- From $C \wedge (A \wedge D) \wedge E$ infer $(A \wedge C) \wedge D \wedge E$.
- From $C \wedge D \wedge (A \wedge E)$ infer $(A \wedge C) \wedge D \wedge E$.
Conjunction elimination
- From $A \wedge B$ infer $A$.
Our system clearly satisfies soundness for propositional classical logic. It also satisfies completeness: we prove this by reducing the completeness of our system to that of Hilbert's proof calculus.
Lemma. Given a derivation of length $n$,
- {1) $Q_1$
- (2) $Q_2$
- (3) $\dots$
- (n) $Q_n$
in the Hilbert calculus, we can find a derivation of $Q_n \wedge \dots \wedge Q_2 \wedge Q_1$ in our system.
Proof. By induction on the length of the Hilbert calculus derivation $\delta$. If the derivation has length 1, then $Q_1$ is a substitution instance of an axiom $\varphi$, so we can use the first axiom rule of our system to prove $Q_1$. From here on assume that the derivation has length $n+1$. By induction hypothesis, our system has a derivation of $Q_n \wedge \dots \wedge Q_1$. We have two cases to consider.
Case 1: The last rule of the derivation $\delta$ is an axiom rule of the Hilbert system. In this case $Q_{n+1}$ is a substitution instance of an axiom, and from $Q_n \wedge \dots \wedge Q_1$ we can infer $Q_{n+1} \wedge Q_n \wedge \dots \wedge Q_1$ using the second axiom rule of our system.
Case 2: The last rule of the derivation $\delta$ is a modus ponens rule of the Hilbert system, inferring $Q_{n+1}$ from $Q_k$ and $Q_\ell$ (w.lo.g. assume $k > \ell > 1$). Take your favorite axiom $\varphi$, then argue in our system as follows:
- Have $Q_n \wedge \dots \wedge Q_1$ by induction hypothesis.
- Infer $(Q_n \wedge \dots \wedge Q_1) \wedge \varphi \wedge \varphi$ using the third axiom rule.
- Infer $(Q_k \wedge \dots \wedge Q_1) \wedge (Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge \varphi$ by using the first shunting rule repeatedly.
- Infer $(Q_{k-1} \wedge \dots \wedge Q_1) \wedge (Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_k \wedge \varphi)$ by using the second shunting rule.
- Infer $(Q_\ell \wedge \dots \wedge Q_1) \wedge (Q_{\ell + 1} \wedge \dots \wedge Q_{k-1} \wedge Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_k \wedge \varphi)$ by using the first shunting rule repeatedly.
- Infer $(Q_{\ell-1} \wedge \dots \wedge Q_1) \wedge (Q_{\ell + 1} \wedge \dots \wedge Q_{k-1} \wedge Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_\ell \wedge Q_k \wedge \varphi)$ using the second shunting rule.
- Infer $(Q_{\ell-1} \wedge \dots \wedge Q_1) \wedge (Q_{\ell + 1} \wedge \dots \wedge Q_{k-1} \wedge Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_\ell \wedge Q_k \wedge Q_{n+1} \wedge \varphi)$ using the relevant modus ponens rule.
- Infer $(Q_{\ell} \wedge \dots \wedge Q_1) \wedge (Q_{\ell + 1} \wedge \dots \wedge Q_{k-1} \wedge Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_k \wedge Q_{n+1} \wedge \varphi)$ using the fourth shunting rule.
- Infer $(Q_{k-1} \wedge \dots \wedge Q_1) \wedge (Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_k \wedge Q_{n+1} \wedge \varphi)$ using the third shunting rule repeatedly.
- Infer $(Q_{k} \wedge \dots \wedge Q_1) \wedge (Q_{k+1} \wedge \dots \wedge Q_n \wedge \varphi) \wedge (Q_{n+1} \wedge \varphi)$ using the fourth shunting rule.
- Infer $(Q_{n} \wedge \dots \wedge Q_1) \wedge \varphi \wedge (Q_{n+1} \wedge \varphi)$ using the third shunting rule repeatedly.
- Infer $(Q_{n+1} \wedge \dots \wedge Q_1) \wedge \varphi \wedge \varphi$ using the fourth shunting rule.
- Infer $Q_{n+1} \wedge \dots \wedge Q_1$ using conjunction elimination.
Qed.
As a corollary, we get completeness for our system.
Proof. Take a classical tautology $P$. By completeness for the Hilbert calculus, we can find a derivation $\delta$ of $P$ in the Hilbert calculus. By our previous lemma, we can find a derivation of $P \wedge Q_n \wedge \dots \wedge Q_1$ for some $n \in \mathbb{N}$ in our system. Using conjunction elimination, we can infer $P$ in our system. Qed.