I want to know how to prove the following formula
1)$\gcd(k^{2^i}+1,k^{2^j}+1)=1$ when $i \ne j$ and $k$ is even.
2)$\gcd(k^{2^i}+1,k^{2^j}+1)=2$ when $i \ne j$ and k is odd.
Thanks!
I want to know how to prove the following formula
1)$\gcd(k^{2^i}+1,k^{2^j}+1)=1$ when $i \ne j$ and $k$ is even.
2)$\gcd(k^{2^i}+1,k^{2^j}+1)=2$ when $i \ne j$ and k is odd.
Thanks!