2

I want to prove $$\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\binom{n}{k}\binom{k}{l} l\right)=n \times 3^{n-1}$$ with combinatoric argumentation.

I have tried to understand it by comparing it with similiar problems. One such problem would be to prove the following equation with combinatoric argumentation:

$$\sum_{k=1}^n {{n}\choose{k}}*k = n* 2^{n-1}$$ The proof would be

https://math.stackexchange.com/a/7767/788271

How can i apply that solution to the given problem?

RobPratt
  • 45,619

2 Answers2

3

We have $n$ people, One of them will be the Captain & all the others will be one of $3$ types (A,B or C).

Choose $n-k$ to be of type $A$, now choose $k-l$ out of the remaining $k$ to be of type $B$, now choose one of the remainig $l$ to be the captain and let the final $l-1$ be of type $C$.

Donald Splutterwit
  • 36,613
  • 2
  • 26
  • 73
  • Nice simplification of the sum. Still, I would not see how this expresses the given sum above, or how to actually calculate all the possibilities (without knowing the solution). Does this 'method' of counting has a name? – Cornman Nov 03 '20 at 21:42
  • 1
    @Cornman Click on tags ... & choose "combinatorial proofs" ... this is a standard technique to count the same thing in two ways. In this example the first paragraph is clearly $n3^{n-1}$ and the second paragraph is ... \begin{eqnarray} \sum_{k=0}^{n} \binom{n}{k} \sum_{l=0}^{k} \binom{k}{l} l. \end{eqnarray} – Donald Splutterwit Nov 03 '20 at 21:49
2

Playing algebraically.

$\begin{array}\\ s(n) &=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\binom{n}{k}\binom{k}{l} l\right)\\ &=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\dfrac{n!k!}{k!(n-k)!l!(k-l)!}l\right)\\ &=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\dfrac{n!l}{(n-k)!l!(k-l)!}\right)\\ &=\sum_{k=0}^{n}\sum_{l=0}^{k}\dfrac{n!l}{(n-k)!l!(k-l)!}\\ &=\sum_{l=0}^{n}\sum_{k=l}^{n}\dfrac{n!l}{(n-k)!l!(k-l)!} \quad\text{(when in doubt, reverse the order of summation)}\\ &=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=l}^{n}\dfrac{1}{(n-k)!(k-l)!}\\ &=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=0}^{n-l}\dfrac{1}{(n-(k+l))!(k+l-l)!}\\ &=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=0}^{n-l}\dfrac{1}{(n-k-l)!k!}\\ &=\sum_{l=0}^{n}\dfrac{n!l}{l!(n-l)!}\sum_{k=0}^{n-l}\dfrac{(n-l)!}{(n-k-l)!k!}\\ &=\sum_{l=0}^{n}l\binom{n}{l}\sum_{k=0}^{n-l}\binom{n-l}{k}\\ &=\sum_{l=0}^{n}l\binom{n}{l}2^{n-l}\\ &=\sum_{l=0}^{n}(n-l)\binom{n}{n-l}2^{l}\\ &=\sum_{l=0}^{n}n\binom{n}{n-l}2^{l}-\sum_{l=0}^{n}l\binom{n}{l}2^{l}\\ &=n3^n-\sum_{l=0}^{n}l\binom{n}{l}2^{l}\\ &=n3^n-2n3^{n-1} \qquad (*)\\ &=n \times 3^{n-1}\\ \end{array} $

(*) $(1+x)^n =\sum_{k=0}^n \binom{n}{k}x^k $ so $n(1+x)^{n-1} =\sum_{k=1}^n \binom{n}{k}kx^{k-1} $ so, with $x = 2$, $n3^{n-1} =\sum_{k=1}^n \binom{n}{k}k2^{k-1} $ or $2n3^{n-1} =\sum_{k=1}^n \binom{n}{k}k2^{k} $

marty cohen
  • 107,799