Playing algebraically.
$\begin{array}\\
s(n)
&=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\binom{n}{k}\binom{k}{l} l\right)\\
&=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\dfrac{n!k!}{k!(n-k)!l!(k-l)!}l\right)\\
&=\sum_{k=0}^{n}\left(\sum_{l=0}^{k}\dfrac{n!l}{(n-k)!l!(k-l)!}\right)\\
&=\sum_{k=0}^{n}\sum_{l=0}^{k}\dfrac{n!l}{(n-k)!l!(k-l)!}\\
&=\sum_{l=0}^{n}\sum_{k=l}^{n}\dfrac{n!l}{(n-k)!l!(k-l)!}
\quad\text{(when in doubt, reverse the order of summation)}\\
&=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=l}^{n}\dfrac{1}{(n-k)!(k-l)!}\\
&=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=0}^{n-l}\dfrac{1}{(n-(k+l))!(k+l-l)!}\\
&=\sum_{l=0}^{n}\dfrac{n!l}{l!}\sum_{k=0}^{n-l}\dfrac{1}{(n-k-l)!k!}\\
&=\sum_{l=0}^{n}\dfrac{n!l}{l!(n-l)!}\sum_{k=0}^{n-l}\dfrac{(n-l)!}{(n-k-l)!k!}\\
&=\sum_{l=0}^{n}l\binom{n}{l}\sum_{k=0}^{n-l}\binom{n-l}{k}\\
&=\sum_{l=0}^{n}l\binom{n}{l}2^{n-l}\\
&=\sum_{l=0}^{n}(n-l)\binom{n}{n-l}2^{l}\\
&=\sum_{l=0}^{n}n\binom{n}{n-l}2^{l}-\sum_{l=0}^{n}l\binom{n}{l}2^{l}\\
&=n3^n-\sum_{l=0}^{n}l\binom{n}{l}2^{l}\\
&=n3^n-2n3^{n-1}
\qquad (*)\\
&=n \times 3^{n-1}\\
\end{array}
$
(*)
$(1+x)^n
=\sum_{k=0}^n \binom{n}{k}x^k
$
so
$n(1+x)^{n-1}
=\sum_{k=1}^n \binom{n}{k}kx^{k-1}
$
so,
with $x = 2$,
$n3^{n-1}
=\sum_{k=1}^n \binom{n}{k}k2^{k-1}
$
or
$2n3^{n-1}
=\sum_{k=1}^n \binom{n}{k}k2^{k}
$