-1

If $f:A \rightarrow B$ is a bijection and $S \subseteq A$, prove that $f(A \backslash S) = B \backslash f(S)$

code06
  • 53

1 Answers1

1

Let $x \in B$. One has $$x \in f(A \setminus S) \Longleftrightarrow f^{-1}(x) \in A \setminus S \Longleftrightarrow f^{-1}(x) \notin S \Longleftrightarrow x \notin f(S) \Longleftrightarrow x \in B \setminus f(S)$$

TheSilverDoe
  • 29,720